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Abstract. In the geodetic applications of the Global 
Positioning System (GPS) various types of data 
uncertainty are relevant. The most prominent ones are 
random variability (stochasticity) and imprecision. 
Stochasticity is caused by uncontrollable effects during 
the observation process. Imprecision is due to remaining 
systematic deviations between data and model due to 
imperfect knowledge or just for practical reasons. 
Depending on the particular application either 
stochasticity or imprecision may dominate the uncertainty 
budget. For the joint treatment of stochasticity and 
imprecision two main problems have to be solved. First, 
the imprecision of the original data has to be modelled in 
an adequate way. Then this imprecision has to be 
transferred to the quantities of interest. Fuzzy data 
analysis offers a proper mathematical theory to handle 
both problems. The main outcome is confidence regions 
for estimated parameters which are superposed by the 
effects of data imprecision. In the paper two applications 
are considered in a general way: the resolution of the 
phase ambiguity parameters and the estimation of point 
positions. The paper concludes with numerical examples 
for ambiguity resolution. 

Key words: Fuzzy data analysis, imprecision, fuzzy 
confidence regions, GPS, ambiguity resolution 

 

1 Introduction 

Today, the Global Positioning System (GPS) is 
intensively used in geodetic applications as it is efficient 
and easy to access. The GPS consists of nominally 24 
satellites on six orbital planes. It supplies the broadcast 
transmission of one-way microwave signals on two 

frequencies from the satellites to the individual ground 
stations. The 3D position of the GPS ground antenna and 
the receiver clock offset can be determined by 
simultaneously observing the signals of at least four 
satellites. This yields the satellite-receiver distances either 
directly using the code observations or indirectly via the 
(carrier wave) phase observations. For the second type of 
observations, the ambiguity parameters have to be 
determined. For further reading on GPS and on ambiguity 
resolution techniques see, e.g., Hofmann-Wellenhof et al. 
(1997), Parkinson and Spilker (1996), Teunissen and 
Kleusberg (1998). 

GPS observations are biased by a variety of physical 
effects which have to be considered and handled in data 
processing. There are mainly three groups of causes. The 
most important one is due to the propagation of the 
signals. As the path of the GPS signals leads through the 
complete atmosphere, ionospherically and 
tropospherically caused travel-time delays have to be 
taken into account. They are superposed by multipath 
effects due to signal reflections in the vicinity of the 
tracking GPS antenna. The second group comprises all 
satellite effects like, e.g., signal transmission delays, 
satellite clock errors, satellite orbit errors, and satellite 
antenna offsets. Station and receiver effects like, e.g., 
signal reception delays and receiver clock errors belong 
to the third group. In addition, the GPS data processing 
results show characteristics due to the software and the 
operator. 

Several techniques can be applied to reduce or eliminate 
most of the systematic effects such as the use of 
correction models with fixed or free parameters or of 
linear combinations of the GPS observations such as 
double differencing. Longer-term periodic signals such as 
diurnal ones can be weakened if the observation time is 
sufficiently long. However, such effects can not be 
eliminated completely due to the imperfect knowledge 
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and the approximate character of the models in use, 
respectively. Hence, the uncertainty due to remaining 
systematic effects (imprecision) must be taken into 
account in addition to the random variability 
(stochasticity) of the observations. Kutterer (2001a, 2002) 
gives a general discussion of uncertainty in geodetic data 
analysis. Imprecision is particularly relevant in case of 
long distances between the GPS sites or very short 
observation intervals as in neither case it is possible to 
completely describe and remove systematic effects. This 
paper can be seen as an extension and generalization of 
the results given by Kutterer (2001b). 

Fuzzy data analysis (Bandemer and Näther, 1992; Viertl, 
1996) has proven to be an adequate mathematical tool to 
handle imprecision. Moreover, the combination of 
methods from stochastic and fuzzy theory allows the 
extension of classical geodetic data analysis to account 
for the effects due to superposed imprecision. In the 
following, the basics of fuzzy data analysis are presented. 
Two alternatives for the definition of fuzzy vectors are 
discussed. If the classical formulas of statistics are 
fuzzified by means of Zadeh’s extension principle, 
stochasticity and imprecision can be treated 
simultaneously. Thus, imprecise confidence regions for 
the ambiguity parameters and for the point positions can 
be defined and discussed. At the end of the paper the 
results of simulation studies are given. They illustrate the 
applicability of the theory and quantify the impact of 
imprecision. 

2 Basics of fuzzy data analysis 

Fuzzy-theory was initiated by Zadeh (1965) in order to 
extend classical set theory by describing the degree (of 
membership) that a certain element belongs to a set. In 
classical set theory the membership degrees are either 1 
(is element) or 0 (is not element). In fuzzy set theory the 
range of membership degree is [0,1]. Thus, a fuzzy set is 
defined as 

{ } [~
~ ~A  (x , m (x))  x  X  , m  : X  0 , 1A A= ∈ → ] . (1) 

The degree of membership is given by the membership 
function which is denoted by . X is a classical set 
such as the set R of the real numbers. Important notions 
are the support of a fuzzy set (classical set with positive 
degrees of membership), the height of a fuzzy set 
(maximum membership degree), the core of a fuzzy set 
(the classical set with membership degree equal to 1), and 
the α-cut of a fuzzy set (classical set with membership 
degree greater equal α ∈ [0,1]). For further reading see 

standard references on fuzzy data analysis such as 
Bandemer and Näther (1992) or Viertl (1996). 

m (x)A~

The most important operation in fuzzy-theory is the 
intersection of fuzzy sets. It is defined through the 
resulting membership function 

( )m   min m , mA B A B~ ~ ~ ~∩ =  (2) 

This definition is mostly used. Other consistent 
extensions of the classical intersection operator are 
available. See, e.g., Dubois and Prade (1980). 

Fuzzy numbers can be defined based on fuzzy sets. A 
fuzzy number is a fuzzy set with a single element core and 
compact α-cuts. The L-fuzzy numbers defined by Dubois 
and Prade (1980) are widely used. They are exclusively 
considered in this paper. Their membership function is 
given by a strictly decreasing non-negative reference 
function L with [0,1] as the range of values. 
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Due to the single element core, L(0) = 1. For a graphical 
sketch of a L-fuzzy number with a linear reference 
function see Fig. 1. Formally, it can be represented by 

. The mean point is denoted by x~X   (x ,  x )m s= m. The 
spread xs serves as a scale factor. In practice, a typical 
membership function vanishes outside the interval given 
by the lower bound xl and the upper bound xu. 

 
Fig. 1 L-fuzzy number with linear membership function (triangular 

fuzzy number) 

The extension principle (Zadeh, 1965) 
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( )

~ ~ ~ ~
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allows the generalization of functions with real arguments 
to functions with fuzzy arguments. For L-fuzzy numbers,  

the extended arithmetic rules are, e.g., 

~ ~

~ ~

~

X +  Y

X -  Y

   

   

   

= +

= − +

=

(x + y , x y )

(x y , x y )

a X (a x , a  x )

m m s s L

m m s s L

m s L

Addition

Subtraction

Multiplication by a real number

 (5a, b, c) 

The type of the reference function is preserved. The 
arithmetic operations can be carried out simply based on 
the mean points and the spreads. Please note that 
subtraction is not the inverse of addition. In fuzzy data 
analysis the spreads are regarded as measures of 
fuzziness or imprecision, respectively. Obviously, they 
are just added (linear propagation) in contrast to the 
addition of variances (quadratic propagation of the 
standard deviations) according to the Gaussian law of 
error propagation. 

 
Fig. 2 Two-dimensional fuzzy vectors by the minimum rule 

There are several possibilities to combine fuzzy numbers 
to a vector; see, e.g. Viertl (1996), Kutterer (2002). The 
mostly used way is to build a fuzzy vector by the 
minimum rule, i.e. using the minimum operator according 
to Eq. (2). In the 2D case this reads as 

( )m  (m (x),m (y))X Y~ ~Z z =   min ~  (6) 

For a graphical representation (linear reference function L 
as in Fig. 1) see Fig. 2. Such fuzzy vectors are called non-
interactive (independent components). 

A linear mapping of a fuzzy vector by the minimum rule 
can be approximated by the tightest inclusion 

m ( )  (  ,    ) LFZ m sF z F z~ z =  (7) 

The operation . yields the matrix of the absolute values 
of the matrix components. 

Interactive fuzzy vectors can be defined through  

( ) ( ) ( )( )m h   T 1
~Z mz z z U z= − −−

mz  (8) 

 
Fig. 3 Two-dimensional fuzzy vector of elliptic type 

The function h is monotonously decreasing and non-
negative with h(0)=1. The spreads and the interaction of 
the components are quantified in the positive definite 
uncertainty matrix U. Interaction is principally present 
due to the quadratic form which is the argument of h. 
Fuzzy vectors according to Eq. (8) are called fuzzy 
vectors of elliptic type. See Fig. 3 for a graphical 
representation; the function h of non-negative real 
arguments p and the matrix U are chosen as 
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y
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Linear mappings of fuzzy vectors of elliptic type are 
given in closed form by 

( ) ( ) ( ) ( )m =   T T 1
~ ~Y=

−
− −



FZ m my y y FUF y y  h  (9) 

The simplicity and closeness of Eqs. (8) and (9) is in 
contrast to the problems of motivating and formulating 
interactive (i.e. fuzzy-theoretically dependent) 
components. The equivalence with the Gaussian error 
propagation (variance propagation law) is obvious. But it 
has to be kept in mind that the interpretation is different 
since the membership functions must not be confused 
with the independently defined density functions of 
probability theory. Nevertheless, a quadratic propagation 
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of spreads is available by means of fuzzy vectors of 
elliptic type; see Eq. (9). 

3 Modeling and propagation of data imprecision 

Fuzziness and imprecision are considered as being 
identical in the following as it is common practice in 
fuzzy data analysis. Hence, fuzzy data analysis can be 
applied to handle the impact of observation imprecision 
on the parameters of interest. As already motivated in 
Section 1, there are several sources of imprecision in GPS 
data acquisition and analysis. Hence, both stochasticity 
and imprecision have to be considered in a general 
combined approach. Stochasticity is assumed to be 
superposed by imprecision. This is the basic condition of 
the extension principle according to Eq. (4). 

There are three steps to derive the imprecision of the 
quantities of interest. First, the imprecision of a single 
observation has to be described by means of a fuzzy (or 
imprecise) number. This can be based on a questionnaire 
to be completed by experts in order to assess the 
particular application; see, e.g., Kutterer (2002) for 
details. Second, the fuzzy numbers representing the 
imprecise observations have to be combined to a fuzzy 
(or imprecise) vector. This can be based on the two types 
of fuzzy vectors given in Section 2; see Eq. (6) for the 
definition of a fuzzy vector by the minimum rule and Eq. 
(8) for a fuzzy vector of elliptic type. Third, the extension 
principle according to Eq. (4) has to be applied to the 
real-valued functional expressions. Here, the least-
squares estimator (LSE) 

( )$β = X W X X W yT T-1
 (10) m

of the (deterministic) parameters β in a Gauss-
Markoff model is considered first. Its variance-
covariance matrix (vcm) reads as 

( )Σ
ββ$ $

=
−

σ0
2 1

X W XT  (11) 

The column-regular [n×u]-dimensional configura-
tion matrix is denoted by X and the [n×n]-
dimensional regular weight matrix of the 
observations by W. The vector of the observations 
is represented by y. The a priori variance factor is 
given by σ . 0

2

The second quantity of interest is the (1-γ)-
confidence region für the expected value µ of β  
which is given by 

$

( ) ( ) ( )K
T

u1 1
2

− −= ≤







γ γχ$ $ $
$ $ ,β µ µ − β Σ µ − β
ββ
−1  (12) 

with  the (1-γ)-fractile value of the 

χ

χ γn,1
2

−
2

∈

−distribution with u degrees of freedom. 

3.1 Extended least-squares estimator 

In the first case (LSE according to Eq. (10)) the extension 
principle reads as 

( )
( )

( )m m

T T

u

$
~
$ sup ~ $

$
β

β β

β

= ∀
∈

=

y

X W X X W y

y y
R

R
n

-1

 (13) 

with  the membership function of the vector of 

the n imprecise observations and   the 

membership function of the vector of the u imprecise 
estimated parameters. The use of fuzzy vectors by the 
minimum rule yields 

( )~y y

( )m $
$

β
∼ β

( ) ( ) ( )m T T
m

T T
s

L
$
$ ,

β
∼ β = 



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X W X X W y X W X X W y
-1 -1

 (14) 

according to Eq. (7). The use of fuzzy vectors of elliptic type yields 

( ) ( ) ( ) ( ) ( )m T T T
$
$ $ $ $ $

β
∼ β β β β β  h =   

T -1

− 



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−








m

-1 -1
mUX W X X W W X X W X  

according to Eq. (9) with 

( )$βm
T T

m= X W X X W y
-1

 

This can be rewritten as 

( ) ( ) ( )m $ $ $
$ $ $ $ $

β ββ
−1

∼ β β β β β  h =   
T

− −



m U m  (15a) 

with the imprecision matrix 

( ) ( ) U X W X X W W X X W X$ $ββ
= T T T-1 -1

U  (15b) 
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respectively; see, e.g., Kutterer (2002). Please note that 
for both the fuzzy vectors by the minimum rule and the 
fuzzy vectors of elliptic type the mean point vectors β  
are identical with the classical (precise) least-squares 
estimators. Thus, both presented fuzzy extensions are 
consistent with the real-valued case. 

$
m

3.2 Extended confidence regions 

In case of the confidence regions, see Eq. (12), the 
extension principle reads as 

( )
( )

( )m mK
K

~
$ $

$ sup $
1

1
−

= ∀
∈ −

γ

γ

β µ
µ β β

∼ R u∈β

$βm

$
m

 (16) 

Eq. (16) represents a constrained optimization problem. 
The imprecise confidence region is the solution of this 
problem. In order to obtain a closed-form expression for 
the results, fuzzy vectors of elliptic type 

( ) ( )m h    
T

1
$ $ $
~ ( ) $
β ββ

µ µ β µ= − −





−
m U  (17) 

as given in Eqs. (15a, b) are solely considered in the 
following. The function h is strictly decreasing for non-
negative arguments. Hence, the supremum or maximum 
functional value, respectively, is obtained with the 
minimum argument value (quadratic Euclidean distance 
with respect to ) U $ $ββ

( ) ( ) ( )d2
2

, $ $ $ $, $ $
U m m U

ββ ββ
µ β µ β µ β= − −−

T
1   

under the side condition 

( ) ( ) ( )µ β µ µ − β Σ µ − β
ββ
−1∈ = ≤









− −K
T

u1 1
2

γ γχ$ $ $
$ $ ,  

An equivalent side condition is 

( ) ( ) [ ]µ − β Σ µ − β
ββ
−1$ $ , ,$ $ ,

T

uwith= ∈ −κ κ χ γ
2 2

1
20  

Thus, the objective function to be minimized with respect 
to (w.r.t.) µ reads as 

( ) ( ) ( ) ( ) ( ) [Φ µ µ β µ β µ − β Σ µ − β
ββ ββ

−1= − − − −





∈−
−

$ $ $ $ , ,$ $ $ $ ,m mU
T

1  λ κ κ γ

T

uwith2 2
1

20 ]χ

$

$

 (18) 

and with the Lagrangian multiplier λ. 

Two special cases can be distinguished: Obviously, as 

long as , there is always a µ β  

with  and hence . 

Consequently, the resulting value of the membership 
function is equal to one. Hence, the obtained classical set 
corresponds to the confidence region given by Eq. (12). 

( )$β β∈ −K m1 γ

µ β= $
m

( )∈ −K1 γ
$

) 0, $U mµ β =(d2
2

, $ $ββ

In all other cases, i.e., , there is 

.   Then  the  problem  can  be  

( )$β β∉ −K m1 γ

κ χ γ
2

1
2= =−u, constant

understood in a geometrical way as the determination of 
the distance between the point  and the hyperellipsoid $βm

( ) ( ) ( )K
T

u1 1
2

− −= =







γ γχ$ $ $
$ $ ,β µ µ − β Σ µ − β
ββ
−1 . As 

now the distance is in any case positive, the 
corresponding values of the membership function are less 
than one. Hence, the confidence region according to Eq. 
(12) is the core (see Section 2) of the extended 
confidence region. 

The objective function given in Eq. (18) now reads as 

( ) ( ) ( ) ( ) ( )Φ µ µ β µ β µ − β Σ µ − β
ββ ββ

−1= − − − −





=−
−

$ $ $ $ ,$ $ $ $ ,m mU
T

1  λ κ γ

T

uwith2 2
1

2κ χ  (19) 

The determination of the stationary point which refers to 
the minimum requires the differentiation of Φ w.r.t. 
µ which yields 

 
( ) ( ) ( )∂

∂
λ

Φ µ

µ
µ β µ − β Σ

ββ ββ
−1= − − =−2 2$ $

$ $ $ $m U
T

1  
T

0  

and 

( ) ( )  1U m$ $ $ $
$

ββ ββ
−1µ β Σ µ − β− − − =λ 0$

$

. (20) 

Hence, 

( ) ( )  1 1µ − β Σ β − β
ββ ββ

−1
ββ

$ $
$ $ $ $ $ $= −−

−
−U Uλ

1

m  (21) 

Differentiation of Φ w.r.t. λ yields 

( ) ( )µ − β Σ µ − β
ββ
−1$ $ .$ $

T
− =κ 2 0  
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Insertion of Eq. (21) into the last one finally yields the single equation 

( ) ( ) ( ) ( )$ $ $ $
$ $ $ $ $ $ $ $ $ $β − β Σ Σ Σ β − β
ββ ββ ββ ββ ββm

T

m− −
− −

λ λU U
1 1 2= κ

$ $

$

  

which is nonlinear w.r.t. the single unknown λ. λ can be 
determined numerically by a common root-finding 

method. When its actual value is known, Eqs. (20) and 
(21) yield 

( ) ( ) ( ) 1 1µ β Σ µ − β Σ Σ β − β
ββ ββ

−1
ββ ββ

−1
ββ ββ

−1
ββ

− = = −−
−

−$ $
$ $ $ $ $ $ $ $ $ $ $ $ $ $m U U U Uλ λ λ

1

m  (22) 

Finally the membership function of the imprecise confidence region is obtained regarding Eq. (16) as 

( )
( ) ( ) ( )m

h    K1-
T

1
~

$ $

( $ )
, $ $

$ $ , $γ

γ

γ

β
β β

µ β µ β β β
ββ

=
∈

− −



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∉









−

−
−

1 1

1

K

K

m

mm mU
. (23) 

with (  as given in Eq. (22). )µ − β$m

Please note that the second derivative of Φ w.r.t. µ 

( ) ( )∂

∂
λ

2

2 2
Φ µ

µ
Σ

ββ ββ
−1= −−U $ $ $ $

1   

has to be positive definite to assure a minimum what can 
easily be checked. 

Eq. (23) describes the extension of classical confidence 
regions to confidence regions where the originally 
random-type quantities of interest are superposed by 
imprecision. It is a significant generalization of the 
corresponding Eq. (20) in Kutterer (2001b) where U  

and had to be proportional. Like in the analysis of 

GPS observations both the phase ambiguity search spaces 
and the precision of point positions are represented by 
confidence regions, Eq. (23) plays the key role in any 
case when imprecision has to be taken into account. 

$ $ββ

Σ
ββ$ $

Fig. 4 shows exemplarily for the 2D case the 
superposition of a classical (1-γ) confidence ellipse and 
an imprecise 2D vector of elliptic type. It is obvious that 
the superposition of the two quantities does not yield an 
elliptic quantity. The maximum membership degree is 
obtained for the mean point of the imprecise vector and 
the corresponding confidence ellipse. This is only valid 
for the classical confidence region. 

 
Fig. 4 Imprecise confidence ellipse as resulting from the superposition of a classical (precise) confidence ellipse and an imprecise vector. The 

quantities are placed separately for the sake of better representation. The light-gray lines indicate isolines of the membership values. 

The qualititative difference of the presented results 
from the common unterstanding of accuracy is 
obvious from the extended LSE and the extended 
confidence regions. Actually, the introduced 
combined measures of stochasticity and imprecision 
are closer to the idea of accuracy in practical 
applications. The classical statistical point of view 

implies reduction of uncertainty just by repetition of 
observations. If fuzzy-theory is used to model and 
handle imprecision this is not possible. The amount 
of imprecision is kept when observations are 
repeated. Imprecision can only be reduced outside 
the particular observation scenario as it is according 
to common sense. 
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4 Extended GPS phase ambiguity search spaces 

The linearized functional model of GPS code and phase 
observations reads as 

( )E y X A Z= = +β ξ ζ  (24) Σ

with the expectation E(.), the real-valued parameters 
ξ such as coordinates and the integer ambiguity 
parameters ζ. The matrices A and Z denote the two 
corresponding components of the configuration matrix X. 
Please note that the vector y comprises both code and 
phase observations or differences, respectively. For the 
following there is no need to distinguish between 
undifferenced and double-differenced observations. The 
only impact is then on the adequate parametrization. The 
rows of matrix Z which correspond with the code 
observations are naturally equal to zero. The vcm or 
dispersion matrix of y given by 

( )D y yy= Σ  (25) 

A real-valued approximation of the integer ambiguity 
parameters is obtained by a least-squares estimation 
weighted by  as yy

−1

$ζ = F y  (26a) 

with 

( )

( )

F Z A A A A Z

Z A A A A

yy yy yy yy

yy yy yy yy

= −











× −











− − − −
−

− − − −

T T T

T T T

Σ Σ Σ Σ

Σ Σ Σ Σ

1 1 1 1
1

1 1 1 1

 (26b) 

what leads to 

( )Σ Σ Σ Σ Σ Σ
ζζ$ $

= = −











− − − − −
−

F F Z A A A A Zyy yy yy yy yy
1 1 1 1 1

1
T T T T  (27) 

for the vcm of the real-valued estimates of the integer 
ambiguity parameters. Consequently, the corresponding 
(1-γ)- confidence hyperellipsoid regarding Eq. (12) reads 
as 

( ) ( ) ( )K
T

f1
2

− =








γ χ$ $ $
$ $ ,ζ µ µ − ζ Σ µ − ζ
ζζ
−1

1−≤ γ  (28) 

with f denoting the number of ambiguity parameters; see 
Kutterer (2001b). The confidence region given in Eq. 
(28) can be set up based on code observations only. It 
serves as a search space for the integer ambiguity 
parameters. 

The methods proposed in literature for ambiguity 
resolution differ mainly in the strategy how to identify the 
„correct“ ambiguity parameter. In any case they depend 
and rely on the adequateness of the models given in Eqs. 
(24) and (25). In particular, the functional model has to 
be accurate in the meaning that the existing errors are 
only assignable to the observations and that they are all 
and exclusively random. However, this does not hold in 
general. This assumption is certainly not suitable for 
short observation times or real-time applications and for 
long baselines. Hence, the imprecision of the 
observations has to be assessed and modelled as 
mentioned above. Then it has to be superposed to the 
search space by applying the procedure shown in Section 
3, in particular by using Eq. (23). 

As the extended search space is obviously enlarged, more 
candidate vectors have to be taken into account for 
ambiguity resolution. If a rounding procedure is applied 
such as the LAMBDA method (Teunissen and Kleusberg, 
1998), there is no change for the integer-estimated 

ambiguity vector. However, due to the increased number 
of candidates the separability of the best and the second-
best solution may be reduced which leads to more reliable 
results. In all other methods like, e.g., On-The-Fly 
algorithms (Abidin, 1993; Leinen, 2001), the degree of 
imprecision given by the membership function of the 
extended search space offers additional information for 
the validity of the solution. 

5 Extended error measures for GPS site positions 

Imprecise (1-γ)-confidence regions (ellipses and 
ellipsoids, respectively) for the 3D positions of GPS sites 
can be given in analogy to the ambiguity resolution 
presented in Section 4. As soon as the ambiguity 
parameters are known (and fixed, respectively), the phase 
observations can be used as highly precise distance 
observations. The functional model according to Eq. (23) 
simplifies to 

( )E withy A y y Z= =ξ , − ζ , (29) 

but the stochastic model represented by the vcm 

( )D y yy yy= =Σ Σ  (30) 

is unchanged because the introduced ambiguities are 
considered as exact. Least-squares estimation of the 
remaining real-valued unknown parameters like, e.g., 
position coordinates or tropospheric parameters, yields 

( )$ξ Σ Σ= − − −A A Ayy yy
T T1 1 1 y  (31) 
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with the corresponding vcm 

( )Σ Σ
ξξ$ $

= − −
A Ayy

T 1 1
 (32) 

The submatrix for a set of parameters such as the 
coordinates of a particular point is obtained by means of a 
selection matrix like, e.g., 

( ) ( )[S 0 I 0i i= × − × −3 3 1 3 3 3i ]u  (33) 

Hence, for the position of the ith point it is 

( )$ξ Σ Σi i
T T= − − −S A A A yyy yy

1 1 1  (34) 

and 

( )Σ Σ
ξξ,$ $ i i

T
i
T= − −

S A A Syy
1 1

 (35) 

Its classical (1-γ)-confidence ellipsoid reads as 

( ) ( ) ( )K i i

T

i i1
2

− =








γ χ$ $ $
$ $ξ µ µ − ξ Σ µ − ξ
ξξ,
−1

3,1−≤ γ  

The corresponding imprecise confidence ellipsoid is 
obtained by means of the procedure given in Section 3, 
mainly using Eq. (23). 

6. Examples 

In the following, the impact of the proposed 
superposition of stochasticity and imprecision on the size 
of the search space is shown exemplarily. The main idea 
is to extend the classical search space by scaling the 
semi-axes of the respective confidence hyperellipsoid so 
that the result is the tightest inclusion of the support of 
the imprecise confidence region. From a practical point of 
view this is an important first step to consider imprecise 
observations. Below, several GPS real-time scenarios are 
simulated and discussed. This section is organized as 
follows. First, the general configuration and the 
estimation procedure are given. Second, the modeling of 
the imprecise observations and the derivation of the 
imprecise vector of the ambiguity parameters are 
described. Third, the resulting scaling factors for the 
classical search spaces are compiled and discussed. The 
results of the simulation runs were derived by means of 
the procedure which was described in Section 3 and 
which led to Eq. (23). 

The scenarios are based on the nominal GPS 
configuration with 24 satellites which was simulated 
according to orbital elements published by Parkinson and 
Spilker (1996). The respective solutions are based on 
single epoch observations to all visible satellites. The 
number of satellites was controlled by means of an 

elevation mask: If n satellites were visible and m < n 
satellites were considered, those n-m satellites with 
lowest elevation were dropped. The (1-γ)-confidence 
hyperellipsoids are based on a code-only approximate 
position. The standard deviation of the code observations 
was chosen as 0.3 m in order to obtain realistic 
magnitudes. The integer ambiguity parameters were 
approximated by means of a least-squares adjustment 
(float solution) as it is common practice in GPS data 
analysis. From Fig. 4 it is already clear that the resulting 
imprecise confidence regions are no hyperellipsoids but 
more complex quantities. They are fuzzy supersets of the 
classical precise hyperellipsoids. 

The actual ratio of stochasticity and imprecision of the 
observations depends on the respective configuration. It 
is part of the complete uncertainty budget. The relevant 
types of uncertainty can be described and quantified by 
experts in several ways using a detailed questionnaire: A 
sensitivity analysis of the applied correction models for 
example gives insight in critical parameters, site-
dependent effects such as multipath can be assessed by 
studying the local situation, and extensive controlled 
variations of the observation configuration indicate the 
magnitude of external effects.  

In the following examples some illustrative values were 
chosen for the amount of imprecision. The imprecise 
vector of the real-valued approximation of the ambiguity 
parameters was represented as an imprecise vector of 
elliptic type. It was deduced from its range of values 
(convex polyhedron) which is directly computable from 
the imprecision of the observations in the considered 
cases because of the relatively low dimension of the 
parameter space. This polyhedron was then enclosed by 
the tightest possible hyperellipsoid in order to define the 
support of an imprecise vector of elliptic type. A linear 
reference function was chosen as in Figures 1 and 3 and 
Eq. (3), respectively. 

For the first simulation runs the imprecision of all code 
observations was introduced as 0.03 m (10% of the value 
of the standard deviation) what is a very restrained 
assumption. Table 1 shows the scaling factors of the 
semi-axes of the classical search space which were 
obtained for GPS observation sites in three different 
latitudes: equatorial region (Latitude = 0°), mean latitudes 
(45°) and the poles (90°). It is obvious that the scaling 
factor depends only slightly on the configuration - less on 
to the latitude and more on the number of satellites. The 
latter is due to the fact that the amount of imprecision 
increases by the number of observations. There is no 
significant dependence of the results on the time of 
observation. By taking an average value of 1.25 one can 
state that the assumed imprecision of 10% requires an 
extension of the search space by 25%. 
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Tab. 1 Maximum scaling factor for the semi-axes of the classical 
(precise) ambiguity search space in the real-time case (single epoch 

observations) to take imprecision into account. The standard deviations 
of the code observations equal 0.3 m, the imprecision equals 0.03 m. 

Latitude → 
# of sat. ↓ 0° 45° 90° 

4 1.20 1.21 1.20 
5 1.23 1.23 1.23 
6 1.25 1.25 1.25 
7 1.25 1.26 1.27 
8 1.27 1.27 1.27 
9 1.29  1.28 

In further simulations runs the ratio of imprecision and 
stochasticity (in terms of standard deviations) was varied. 
Table 2 shows the results which were derived for the GPS 
observation site with latitude = 45° for different ratios. A 
linear dependence of the scaling factor on the chosen 
ratio can be found. In case of identical magnitudes of 
stochasticity and imprecision (ratio=1) the semi-axes of 
the search spaces need to be increased by a factor 
significantly larger than 3. 

Tab. 2 Maximum scaling factor for the semi-axes of the classical 
(precise) ambiguity search space in the real-time case (single epoch 

observations) to take imprecision into account. The standard deviations 
of the code observations equals 0.3 m, the imprecision is varied. 

% of 
std.dev. → 
# of sats. ↓ 

0.1⋅σcode 0.2⋅σcode 0.5⋅σcode 1.0⋅σcode 2.0⋅σcode 

4 1.21 1.41 2.03 3.06 5.12 
5 1.23 1.47 2.17 3.33 5.65 
6 1.25 1.51 2.26 3.52 6.05 
7 1.26 1.52 2.31 3.61 6.23 
8 1.27 1.54 2.35 3.71 6.41 

The quality of the approximation of the actual imprecise 
search space by scaling the classical (precise) one 
becomes poorer with increasing importance of 
imprecision. In such cases the individual scaling factors 
for the respective semi-axes can differ significantly. Fig. 
4 illustrates this: The imprecise confidence ellipse is 
principally obtained by superposing two ellipses; 
however, the resulting quantity is not elliptic and cannot 
be represented uniquely by an ellipse. Nevertheless, if the 
maximum values for the scaling factors are taken the 
inclusion property is kept in any case. 

The examples indicate that the ratio of stochasticity and 
imprecision plays a leading role in the extension of the 
classical search space in order to take imprecision into 
account. Hence, the traditional procedure of ambiguity 
resolution is inadequate when imprecision dominates the 
uncertainty budget. A rule-of-thumb for practitioners 
reads as follows: The search space needs to be extended 
even in the case of low imprecision. When the 
observations are likely to be imprecise at least in the 
same magnitude as stochasticity the semi-axes of the 

search space should be lengthened by a factor of at least 
3. In this way the quality of the validation of the resolved 
ambiguity vector can be improved. Some remarks on this 
topic were also made at the end of Section 4. 

7 Conclusions and outlook 

As imprecision has to be considered in a variety of 
geodetic applications of the GPS the joint treatment of 
stochasticity and imprecision in GPS data analysis is 
important. Imprecision is an independent type of 
uncertainty and in general it can not be reduced or 
transformed to stochasticity. Hence, the common 
modeling as given in Eqs. (24) and (25) is incomplete 
because it does not take imprecision into account. Fuzzy-
theory allows to distinguish strictly between these two 
types of uncertainty. For this reason it is suitable to 
handle both stochasticity and imprecision. Moreover, it 
allows to control the type of propagation of imprecision 
from the observations to the parameters; see Eq. (7) for 
linear propagation and Eq. (9) for quadratic propagation, 
respectively. In both cases the classical least-squares 
estimator is kept as mean point of the resulting fuzzy set. 

The benefit of the joint treatment of stochasticity and 
imprecision for the GPS community is two-fold. On the 
one hand the resolution of the phase ambiguity 
parameters can be improved by extending the classical 
search space by simple scaling. This is a first step to more 
reliable results in real-time GPS. On the other hand the 
quality of the point positions determined by means of 
GPS can be described more thoroughly. It is well known 
that their formal precision is too optimistic. Imprecise 
confidence regions can objectivy the common measures 
of precision and accuracy since imprecision cannot be 
reduced by repeated observations. 

There are some issues which are worthwhile for further 
studies. First, the uncertainty budget of GPS observation 
configurations has to be evaluated thoroughly for the 
practical application of the presented approach. Thus, a 
look-up table for observation imprecision could be 
worked out for typical configurations. Second, the notion 
of imprecision was based here on L-fuzzy numbers which 
imply identical left and right spreads. In a more general 
formulation LL-fuzzy numbers can be used which have 
identical left and right reference functions but different 
spreads; see standard references on fuzzy-theory. In this 
way the knowledge of possible asymmetries in remaining 
systematic effects could be modeled what would lead 
directly to biases in least-squares estimation which have 
to be taken into account. Third, it is up to now not 
sufficiently understood how imprecision propagates in 
practice from the observations to the parameters of 
interest. There could be more possibilities than the linear 
and the quadratic propagation which were considered in 
this paper. 
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