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Abstract. Augmented reality (AR) technologies enable 
digitally stored information (virtual objects) to be 
overlaid graphically on views of the real world. As such, 
they are able to significantly enhance decision-making 
and operational efficiency in complex environments. AR 
technologies typically comprise a fusion of positioning 
and attitude sensors with visualisation capability and an 
information processing system. The decreasing size and 
cost of visualisation and positioning hardware and the 
increasing portable processing power of laptop and 
handheld computers now offer enormous potential for the 
development of intelligent solutions based around real-
time, mobile AR technologies.  

For any application built around AR technologies, its 
effectiveness lies in the accuracy to which the virtual 
objects can be aligned with views of the real world. For 
many of these applications, this is directly a function of 
the accuracy to which the position and orientation of the 
operation platform can be determined. This paper 
presents an integrated positioning system that combines 
an array of dual frequency GPS receivers, a fibre optic 
gyroscope and vehicle odometer within a centralised 
Kalman filter. It assesses the accuracy of the filter outputs 
of position and attitude as appropriate to supporting real-
time, mobile AR applications. The design and testing of 
an AR prototype that combines the Kalman filter state 
with real-time imagery containing augmented objects will 
also be presented. Finally, approaches adopted to tune the 
filter and reduce inherent sensor noise, as well as results 
from a case study undertaken within the land mobile 
environment will be described. 

Key words: Augmented Reality, GPS, Inertial Sensors, 
Kalman Filter, Integrated Systems 

 

1 Introduction 

Over the last decade there has been an increasing trend 
towards the development of complex decision making 
systems that utilise spatial information. Whilst this has 
largely been attributed to developments in the 
fundamental technologies used to acquire, analyse and 
visualise spatial data, parallel developments in enabling 
technologies such as mobile computing and wired and 
wireless communications have also contributed 
significantly to increasing the diversity of applications 
and users that rely on spatial information.  

This research investigates the use of Augmented Reality 
(AR) technologies as an innovative approach to 
presenting spatial information in an understandable, user-
friendly way through an enhancement of a user’s real-
world perspective view. AR technology is not new and 
has already experienced some success in many areas such 
as powerplant maintenance procedures (Klinker et al., 
2001) and cardiac surgery (Devernay et al., 2001), 
However, current generation AR systems suffer from 
many limitations. These include display systems that are 
often difficult to view in a wide range of environments 
(particularly outdoors); delays in displaying augmented 
information at the appropriate time or position caused by 
the time required to process data from the AR sensors and 
its databases; a time consuming calibration process of the 
AR sensors; a lack of interactivity between the user and 
the AR system; and difficulties in determining the 
location of the user in outdoor environments without the 
prior preparation of placing markers with known 
locations around the area (Azuma et al., 2001). 

The limitations of AR operation in unprepared 
environments forms the basis of the research problem 
addressed in this paper, that is, to develop a position and 
attitude determination component for AR systems 
capable of operation in unprepared environments. In 
particular, it investigates the integration of measurements 
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from the Global Positioning System (GPS) and Dead 
Reckoning (DR) with intelligent information obtained 
from map matching techniques to enable the continuous 
and accurate real-time visual alignment of three-
dimensional objects within the perspective view of a user 
operating in outdoor unprepared environments. 

This paper presents the details of the Kalman filtering 
algorithm developed to calculate the position and attitude 
parameters, as well as the approaches adopted to “tune” 
and “constrain” the Kalman filter solution for operation 
within the land mobile environment. Practical test results 
using an AR prototype developed within this research are 
also presented to validate the performance of the 
integration algorithms. 

2 Position and attitude determination 

AR systems rely on position and attitude parameters to 
register augmented objects with the “real world” 
environment. The accuracy with which these parameters 
can be determined, as well as the availability of the 
solution, can have a significant effect on the success of 
the AR system as a whole.   

To determine accurate and continuous outputs of position 
and attitude parameters (heading, pitch and roll), this 
research investigates the performance of an integrated 
system comprising an array of three Leica GPS 530® 
receivers operating in a Real Time Kinematic (RTK) 
mode, a fibre optic gyroscope and an odometer, see 
Figure 1. 

Each GPS receiver is configured to transmit the GGA 
NMEA string 10 times per second to a processor (laptop 
computer). The fibre optic gyroscope is configured to 
output the rate of change of direction of the platform. It is 
also possible to connect the gyroscope to the engine 
computer management system of the land mobile 
platform used in this research and thereby obtain outputs 
of the distance travelled. The on-board processor was 
used to synchronise the measurements from all sensors, 
to collate the data and to calculate in real-time the 
position and attitude parameters. 

To obtain optimal estimates of the position and attitude 
parameters required for the AR system developed in this 
research, a loosely coupled Kalman filter was used to 
integrate the measurements obtained from all available 
sensors with the geometric distances of the fixed antenna 

geometry and the spatial intelligence of a road network 
database accessed through map matching techniques. 

 
Figure 1 Schematic diagram of the hardware and the flow of data of the 

integrated positioning and attitude determination system 

2.1 Reference Frames 

To compute the attitude parameters for the mobile 
platform, the three GPS antennae (A, B, C) are used to 
define a platform reference frame. Figure 2 illustrates the 
GPS antennae configuration and the platform reference 
frame defined. The vector BC defines the pitch axis, the 
vector AD defines the roll axis, and the vector through D 
and perpendicular to the plane defined by the points A, B 
and C defines the heading axis. Antenna A acts as the 
platform origin and provides the position of the platform. 
A positive pitch rotation occurs when the platform tilts 
back (i.e., the front of the platform rises). A positive roll 
rotation occurs when the platform tilts to the right side, 
and a positive heading rotation occurs when the platform 
rotates to the right. For notation purposes, the platform 
reference frame axes are labelled with a subscript ‘A’ 
(originating from the fact that the platform reference 
frame is defined by the antennae). For computational 
efficiency the Geocentric Cartesian coordinates obtained 
from the GPS receivers are converted to the model 
reference frame (which is a local reference frame) with 
components referred to East, North and Up (EM, NM, 
UM) via a rotation matrix. 
 
 



 
 
 
14 Journal of Global Positioning Systems 

 
Figure 2 The platform reference frame:  (a) roll, pitch and heading as defined by the fixed relative position of the three antennae A, B, and C, and (b) 

antennae referenced within an East, North and Up platform reference frame 

2.2 Kalman filter integration models 

To compute the position and attitude parameters for the 
mobile AR system, a Kalman filter was used to integrate 
the measurements obtained from the array of GPS 
antennae with those from the gyroscope and the 
odometer. As specific details on Kalman filtering 
algorithms and their implementations can be found in 
many references (eg Cross, 1990 and Logan, 2000), this 
paper focuses on the specification of the Kalman filter 
models generated for the AR prototype developed in this 
research.  

2.2.1 Kalman filter functional model for the GPS 
observations 

The approach taken in this research was to define the 
unknowns (or state, ix ) to be solved, as the platform 
position in the model reference frame (i.e. the position of 
Antenna A ( [ ]UNE , the master antenna) and the 
attitude parameters (i.e. heading, pitch and 
roll, [ ]rph ), as presented in Equation (1). 

[ ]Ti rphUNEx =  (1) 

The observations are the coordinates of the each of the 
GPS antennae in the model reference frame. To constrain 
the solution, the fixed spatial relationships between the 
GPS antennae are also included and are defined as offsets 
in Easting, Northing and Up of Antennae B and C from 
Antenna A, see Figure 3. Note that the platform reference 
frame has been defined in such a way that the offsets in 
altitude (i.e. the Up component in the platform reference 

frame) between the antennae are zero. Due to the high 
precision (approximately 0.2 millimetres) with which 
these offsets can be calculated using photogrammetric 
techniques and, since the antennae are rigidly fixed to the 
platform, the offsets are treated as constants. 

 

Figure 3 The spatial relationship between the antennae in the platform 
reference frame 

The coordinates of Antennae A, B and C in the model 
reference frame can be defined in terms of the 
coordinates of Antenna A, the offsets between the 
antennae (defined in the platform reference frame), and 
the attitude (heading, pitch and roll) of the platform 
within the model reference frame. Hence: 
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 (2) 

where M
AR  is a rotation matrix that defines the rotation 

between the platform reference frame and the model 
reference frame. The rotation angles are simply the 
attitude parameters. 

From Equations (2), the observation equations for the 
GPS measurements can be derived in the standard least 
squares observation equation form ( ) lxF =  (Equations 

(5)), where x  is the vector of unknowns and l  is the 
vector of observations. Note that from this point onwards 
unless otherwise indicated, values in the least squares 
adjustment equations without a subscript ‘M’ are in the 
model reference frame, allowing clearer use of subscripts 
to identify Kalman filter epoch values and predicted 
quantities. 

2.2.1 Kalman filter dynamic model 

For implementation of the Kalman filter, the vector of 
unknowns x , must also include sufficient parameters to 
enable prediction of the platform state from one epoch to 
the next by modelling the mobile platform dynamics. 
Hence, 13 additional parameters (see Equation (3)) are 
introduced.  

In this research, a polynomial model is used to predict 
heading, pitch, roll and velocity from one epoch to the 
next, while position is predicted using standard three-
dimensional dead reckoning (DR) equations. The full 
dynamic model used in this research is shown in 
Equation (4).  

The polynomial dynamic model for both heading and 
velocity are two orders higher than that of roll and pitch 
to cater for more frequent and larger magnitude changes 
in these parameters as would be expected from a land 
vehicle. Noise in the dynamic model is assigned within 

the Kalman filter through variances for the parameters
.....
h , 

p , r  and 
.....
v . 

2.2.3 Kalman filter functional model for the gyroscope 
and odometer 

Similar to the GPS outputs, to develop the gyroscope and 
odometer observations equations, the measurements from 
these instruments are modelled in terms of the unknowns. 
For this project, the gyroscope is used to measure change 
in heading, while the odometer measures the distance 
travelled between measurement epochs. Thus, the 
observation equation model for the Kalman filter now 
contains two additional observations, and two additional 
observation equations. The unknown parameters in the 
Kalman filter are also increased by two to account for the 
inherent sensor biases of gyro drift rate and the odometer 
scale factor.  

Equations (5) present the full functional models for all 
observations in the integrated positioning and attitude 
determination system developed in this research. 

Where, ( )l,xf1  to ( )l,xf9  are the observation equations 

from the GPS antenna array. ( )l,xf10  to ( )l,xf28  are 
derived from the predictions within the Kalman filter and 

( )l,xf29  to ( )l,xf32  are the observation equations derived 
from the gyroscope and odometer measurements, where; 

β  Gyro drift rate error (deg/s) 

ε  Odometer scale factor error 

h  Change in heading as measured by the gyro (deg) 

d  Distance travelled as measured by the odometer (m) 

2.3 Tuning the Kalman filter 

When implementing the Kalman filter, information about 
observation precisions, as well as the magnitude of noise 
in the dynamic model is required. In defining the 

dynamic model, estimates of variances for 
.....
h , p , r  and 

.....
v are required. If the sizes of these estimates are large 

compared to the variances given to the observations, a 
slow reaction to sharp manoeuvres occurs. If the sizes of 
these estimates are small compared to the variances given 
to the observations, a quick reaction to sharp manoeuvres 
occurs. In an operational environment neither of these 
situations is ideal, and a model that applies increased 
smoothing when the dynamics of the antennae are 
relatively static and a quick reaction time when the 
dynamics of the antennae change rapidly would be more 
suitable. Within this research, this methodology of “smart 
stochastic modelling” is achieved through the 
implementation of a standard least squares unit variance 
confidence test at each epoch. 



 
 
 
16 Journal of Global Positioning Systems 

T
........

i vhphvrphvrphvrphUNEx
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=  (3) 

 

)psin(tvUU

)hcos()pcos(tvNN

)hsin()pcos(tvEE

vv

tvvv

tv
2
1tvvv

tv
6
1tv

2
1tvvv

tv
24
1tv

6
1tv

2
1tvvv

rr

trrr

tr
2
1trrr

pp

tppp

tp
2
1tppp

hh

thhh

t
2
1hthhh

th
6
1th

2
1thhh

th
24
1th

6
1th

2
1thhh

ipip1iip

ipipip1iip

ipipip1iip

1i
....

i
....

p

1i
....

1iip

2
1i

....

1i1iip

3
1i

....
2

1i1i1iip

4
1i

....
3

1i
2

1i1i1iip

1iip

1i1iip

2
1i1i1iip

1iip

1i1iip

2
1i1i1iip

1i
....

i
....

p

1i
....

1iip

2
1i

....

1i1iip

3
1i

....
2

1i1i1iip

4
1i

....
3

1i
2

1i1i1iip

∆

∆

∆

∆

∆∆

∆∆∆

∆∆∆∆

∆

∆∆

∆

∆∆

∆

∆∆

∆∆∆

∆∆∆∆

+=

+=

+=

=

+=

++=

+++=

++++=

=

+=

++=

=

+=

++=

=

+=

++=

++++=

++++=

−

−

−

−

−−

−−−

−−−−

−−−−−

−

−−

−−−

−

−−

−−−

−

−−

−−−

−−−−

−−−−−

 

where: 
E  Easting coordinate (m) 
N  Northing coordinate (m) 
U  Up coordinate (m) 
h  Heading (deg) 
p  Pitch (deg) 
r  Roll (deg) 
v  Velocity (m/s) 
h  Change in h  (deg/s) 
p  Change in p  (deg/s) 
r  Change in r  (deg/s) 
v  Change in v  (deg/s2) 
(otherwise known as acceleration) 
h  Change in h  (deg/s2) 
p  Change in p  (deg/s2) 
r  Change in r  (deg/s2) 
v  Change in v  (deg/s3) 
(otherwise known as jerk) 
h  Change in h  (deg/s3) 
v  Change in v  (deg/s4) 
....
h  Change in h  (deg/s4) 
....
v  Change in v  (deg/s5) 

 
Note that for these equations, a 
subscript ‘p’ denotes a predicted 
quantity, while a subscript ‘i’ 
denotes the current measurement 
epoch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          (4) 

2.3.1 Unit variance confidence test 

The unit variance ( )2
0σ  is a function of the least 

squares residuals ( v̂ ) (the difference between the 
measurements and the updated measurements after the 
Kalman filter process), the variance of the 
measurements (V1), and the degrees of freedom of the 
adjustment (df) (Equation (6)). 

df
v̂Vv̂ l

T
2

0 =σ       (6) 

Given the correct selection of measurement variances 
and the absence of gross errors, the unit variance 
should not differ significantly from unity. In this 
research, the unit variance confidence test was applied 
at each epoch to distinguish actual movement of the 
vehicle platform from apparent movement caused by 

noise in the observations. In particular, the test seeks to 
determine when the dynamic model correctly predicts 
the motion of the vehicle. If the unit variance 
confidence test fails, this is used as an indication that 
the variances of the dynamic model predicted 
observations are overestimated. It can then be assumed 
that: 

 the dynamic model is not successfully predicting 
the movement of the platform to the precision 
indicated by the predicted observations variances, 
and therefore; 

 the Kalman filter has failed to respond to a 
movement of the platform. 

Consequently, the weights in the Kalman filter are 
significantly reduced to allow the filter to catch up to 
the current platform attitude. On the other hand, if the 
unit variance confidence test does not differ 
significantly from unity: 
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 the dynamic model is successfully predicting the 
movement of the platform to the precision 
indicated by the predicted observation variances, 
and 

 the Kalman filter is sufficiently reacting to 
vehicle dynamics. 

Hence, the filter variances remain high (or are 
increased if they were previously lowered) to provide 
maximum filtering of the data and removal of noise. 
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2.3.2 Intelligent navigation 

Spatial information databases are now a standard 
component of many mobile navigation systems. This is 
directly due to their ability to provide detailed 
information about the location and inter-relationship of 
geographically defined features. Map matching 
techniques traditionally use this information in an 
attempt to improve navigation accuracy. This research 
proposes the integration of map matching techniques, 
(like other navigation instruments such as gyroscopes, 
odometers and GPS), within the Kalman filter, as a 
means of providing additional measurements that can 
be used to improve position and attitude determination. 
The map matching technique implemented in this 
research has been termed “Intelligent Navigation” (IN). 

The IN algorithm developed in this research is 
modelled on the simple rules of navigation that humans 
use on a day-to-day basis, and in doing so incorporates 
both geometric and topological map matching 
techniques. This algorithm has several advantages; it 
consists of a simple, yet effective set of four rules 
(closest road, bearing matching, access only, distance 
in direction); it relies on the short term precision of the 
navigation sensors (in particular DR when GPS is 
unavailable); when implemented in the Kalman filter, 
IN has the unique advantage that it no longer assumes 
the navigator is on the road centreline (i.e. the road 
segments stored in the database), but instead is 
‘following’ the road network. This is particularly 
important for high precision applications. No matter 
how accurate the database information, the navigator 
will not always travel directly on the network, but will 
travel to the left or right of the network to varying 
degrees (unless the navigator is fixed to the network as 
in the case of trains and trams).  

The “closest road” rule of IN makes the assumption 
that the vehicle is travelling along a road (which is 
typically the case). This constraint can be included in 
the location solution, thus improving the accuracy of 
the computed position of the vehicle. This algorithm is 
most effective when the nearest road (according to the 
navigation instrument’s computed position) is in fact 
the road being travelled. However, when approaching 
intersections or when two roads are close to each other, 
the nearest road may not be the road being travelled. In 
such cases, constraining the solution to fall on the 
nearest road actually downgrades the calculated 
position. To avoid such errors, the bearing matching 
rule is required. This rule requires that the nearest road 
to which the vehicle’s position is corrected must have a 
bearing similar to the measured direction of travel. This 
corrects the problem previously described. The 
threshold of similarity between the vehicle’s bearing 
and the bearing of the surrounding roads may be 
adjusted to suit the accuracy of the navigation 

instruments. However, the larger the threshold, the 
more likely it becomes that roads will be incorrectly 
matched as having the same bearing as that of the 
vehicle. The access only rule is designed to identify 
and prevent this error from occurring. Take, for 
example, a vehicle travelling along road A in the road 
layout diagram shown in Figure 4. Assuming the only 
route to road C is via road B, logic dictates that for the 
vehicle to be travelling along road C it must previously 
have travelled along road B. By logging previously 
travelled roads, the navigation system can prevent the 
vehicle from being located on a road that it could not 
possibly be on. 

 
Figure 4 Road layout scenario 

The distance in direction rule reduces the accumulation 
of distance error by calculating the distance travelled 
by the vehicle in the direction of the road rather than 
the direction measured by the navigation device. This 
is particularly important when navigation instruments 
of low accuracy are employed. For example, if a 
vehicle travels 1000 metres along a road of bearing 60 
degrees while measuring the road to have a bearing of 
65 degrees (i.e. 5 degrees in error), an error in distance 
of 4 metres will occur. Although this may seem 
insignificant, over several kilometres, or with lower 
accuracy navigation instruments, larger errors can 
accumulate. This error is avoided by calculating the 
distance travelled independently from the bearing of 
the vehicle and then applying this distance in the 
direction of the road being travelled. 

2.3.3 Deriving the intelligent navigation observation 
equations 

Incorporating IN into the Kalman filter requires the 
development of observation equations from the IN 
rules. This procedure also allows for additional 
parameters to be estimated by the filter, such as offset 
from the centreline. Furthermore, precisions can be 
associated with the information obtained from the map 
data to allow the Kalman filter to optimally estimate 
the position and attitude of the vehicle from all 
available measurements, rather than ‘correcting’ the 
vehicle’s position to a point on the centreline.  

The IN observation equations are derived from: 

 the IN estimate of the vehicle’s ‘corrected’ 
position (which lies on a road segment), and 
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 an estimate of the vehicle’s heading (i.e. the 
heading of the road segment at the IN 
‘corrected’ position). 

An additional parameter is also added to the Kalman 
filter that estimates the shortest distance to the road 
segment that the vehicle is following (referred to as the 
Euclidean distance). By including this parameter, the 
IN rules no longer assume that the vehicle is directly 

on the road centreline, but instead follows a path 
parallel to the road centreline. The variance of this 
parameter dictates how closely the vehicle must follow 
the road centreline. The updated parameters for the 
state of the Kalman filter, including observations 
equations, are shown in Equations (7) and (8). 
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where: 

O  Euclidean distance (m) from the road centreline (a prediction in iP  and a parameter in the Kalman filter ix ) 

INE  Easting coordinate (m) as measured from the road database 
INN  Northing coordinate (m) as measured from the road database 

INh  Heading (deg) as measured from the road database 

 
The resultant observation equations are as follows: 
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where: 

32f  Observation equation for the Euclidean distance from the road centreline as predicted by the Kalman filter 

33f  Observation equation for the easting coordinate as measured from the road database 

34f  Observation equation for the northing coordinate as measured from the road database 

35f  Observation equation for the heading as measured from the road database 

 

2.3.4 Additional intelligent navigation parameters 

There are three important additional parameters that 
can affect the operation of IN. These are: 

 search radius, 

 inner intersection exclusion radius, and 

 angular similarity. 

The search radius is the radial distance that the IN 
algorithm uses to search the surroundings for 

geospatial features. For example, given a search radius 
of 50 metres, at each estimated vehicle location, IN 
will search the surrounding area up to a radius of 50 
metres for features such as roads and road 
intersections. The larger this distance, the larger the 
error that IN is able to correct for. If the nearest road is 
up to 50 metres away, IN (using a 50 metre search 
radius) is able to locate the road and update its 
estimated position to the road (if it meets the suitable 
criteria). 

When approaching intersections, IN is switched off and 
the short term precision of the navigation instruments 
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(assuming DR navigation) is relied upon to avoid 
ambiguous situations. The proximity of intersections 
before IN is switched off is determined by the second 
parameter, inner intersection exclusion radius. The 
larger the radius, the more frequently intersections will 
be detected and IN corrections will therefore not occur.  

The third parameter is the angular similarity. This 
refers to a tolerance within which the actual road 
bearing and calculated bearing (by the external 
navigation devices) are considered to be the same. As 
before, a larger value allows for larger errors to be 
corrected, but also increases the uncertainty in areas 
where roads intersect at oblique or acute angles. 

In addition to these IN parameters, supplementary 
features have been added with the aim of further 
improving the accuracy of the navigation system. An 
additional parameter (the outer intersection exclusion 
radius) is used to constrain the operation of the IN 
algorithm, while a cornering algorithm allows for the 
use of IN on corners. IN could not previously 
implement the cornering algorithm, as prior to the 
inclusion of IN in the Kalman filter, an optimal 
estimate for the Euclidean distance to the road 
centreline was not available. This Euclidean distance is 
required to compute the trajectory of the vehicle 
through the corner. 

The outer intersection exclusion radius parameter 
limits IN operation to the specified ranges of the inner 
intersection exclusion and outer intersection exclusion 
radii. For example, an inner intersection exclusion 
radius of 20m and outer intersection exclusion radius 
of 100m would limit IN operation to areas that are less 

than 100m but no closer than 20m to an intersection. 
This parameter is implemented in such a way that it 
also allows partial limitation of IN, for example, when 
the ‘position exception’ option is invoked, the position 
observations from the IN are included in the Kalman 
filter regardless of the outer intersection exclusion 
radius value. Similarly, using the ‘heading exception’ 
option allows heading observations to be included in 
the Kalman filter regardless of the outer intersection 
exclusion radius value.  

All previous implementations of IN have not operated 
within the proximity of intersections (according to the 
inner intersection exclusion radius). As the vehicle 
travels through the intersection, IN does not provide 
any observations to the Kalman filter. The circular 
cornering algorithm overcomes this gap of 
observations by attempting to predict the vehicle’s 
trajectory based on the available road centreline 
information. A circular curve is used as the prediction 
trajectory. Figure  illustrates this procedure. As the 
vehicle nears an intersection, the rate of turn of the 
vehicle is monitored. If the turn rate increases above a 
specified threshold, the intersection is examined to 
determine which road segment the vehicle is turning 
into. A circular curve is fitted to the vehicle’s current 
position and predicted end of turn location. This curve 
is then used as the road centreline required by IN to 
provide observations. If the vehicle turns away from or 
continues to turn past the road the vehicle was 
predicted to follow, a new road prediction is made 
(again based on the vehicle’s current position, heading, 
turn rate and data available in the road centreline 
database). 

 

 
Figure 5 Circular cornering algorithm: (a) original trajectory prediction, (b) first updated trajectory prediction, and (c) second updated trajectory 

prediction
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The only additional parameter required for the 
operation of the cornering algorithm is the turn rate 
threshold. This value indicates when the vehicle’s turn 
rate is of a large enough magnitude to suggest that the 
vehicle is turning. All other information to predict the 
vehicle’s trajectory is available either from the 
previous epoch of the Kalman filter or from the road 

centreline database. The method for calculating the IN 
position ( )ININ N,E  and heading ( )INh  observables is 
shown in Figure and Equations 9. In order to compute 
the trajectory of the vehicle from one road to the next, 
an assumption is made that the Euclidean distance from 
the road centreline prior to the turn is the same once the 
turn has been completed. 

 
Figure6 Computing the turning radius and centre of rotation 
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where 

O  Euclidean distance between Kalman filtered estimated position and IN estimated centreline position 
(provided by the Kalman filter) 

( )dd N,E  Point of deviation from the current road centreline (as determined by the turn rate threshold) 

d′  Distance from the road centreline intersection to the point of deviation (computed from the road centreline 
database) 
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( )N,E   Vehicle position as computed by the navigation instruments 

The additional parameters and algorithm detailed in 
this section significantly enhance the complexity of the 
resultant Kalman filter. The different modes that are 

now available within the IN module alone are 
summarised in Error! Reference source not found.1. 

Table 1 Summary of Intelligent Navigation modes 

Mode Description 

Continuous Provides position and heading estimations as inputs for the Kalman filter. 
Searches the database for road centrelines within the specified search 
radius, and with bearing matching the angular similarity constraint. Does 
not operate in areas where road intersections are within the intersection 
exclusion radius, but operates at all other times where road data is 
available. This mode includes the centreline offset that estimates the 
distance of the vehicle from the road centreline. Without this offset, an 
incorrect assumption would be made that the vehicle is travelling along 
the road centreline.  

Outer intersection 
exclusion radius 

Limits Intelligent Navigation operation to the specified ranges of the 
intersection inclusion and exclusion radii. For example, an inner 
intersection exclusion radius of 20m and outer intersection exclusion 
radius of 100m would limit Intelligent Navigation operation to areas that 
are less than 100m but no closer than 20m to an intersection. 

Position exception Allows input of Intelligent Navigation position estimation, overriding the 
outer intersection exclusion mode. 

Heading exception Allows input of Intelligent Navigation heading estimation, overriding the 
outer intersection exclusion mode. 

Circular cornering 
algorithm 

Estimates the turning path of the vehicle at road intersections and provides 
position and heading estimations throughout the curve. Operates only 
within the intersection exclusion radius. 

 

The processes for including IN information in the 
Kalman filter are shown in Figure 7. Using data from 
the GPS and DR instruments, the position and attitude 
of the vehicle are estimated. This information provides 
input for the IN algorithms. The results from IN are 
then combined with the GPS/DR measurements and 
filtered to provide an optimal solution using all 
available information. Note that there is only one 
Kalman filter, although it must be run twice. The first 
run provides the input for the IN algorithms. The 
second run computes the optimal state of the mobile 
platform using all available measurements (GPS, DR 
and IN). 

The estimates of precisions used for the observations 
and the dynamic model are shown in Table 2. 

Table 2 Precision estimates for the Kalman filter parameters 

Dynamic model  Standard deviation 
.....
h  0.001 deg/s5 

p  0.01 deg/s3 
r  0.01 deg/s3 
.....
v  0.001 m/s6 

Instrument measurement  
Horizontal RTK GPS 0.01m 
Vertical RTK GPS 0.02m 
Gyro rate 0.008deg/s 

Odometer  2% of distance 
measured 

Intelligent Navigation  
INE INN  0.1 metres 
INh  1 degree 
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Figure 7 Kalman filter process with Intelligent Navigation 

3 Testing and evaluation of Kalman filtering 
algorithms 

To evaluate the integration algorithms developed in 
this research an AR prototype, iARM (Intelligent 
Augmented Reality Mapper) was constructed. The 
iARM consists of the integrated positioning and 
attitude determination system described previously, 
combined with a digital video camera and a database 
containing three dimensional objects used for 
augmentation. 

The iARM was installed on a typical land mobile 
vehicle and a 1 kilometre road circuit located within 
the Melbourne General Cemetery was used as the test 

bed for this research. With an extensive network of 
roads, the cemetery offered many challenges to the 
integrated position and attitude determination system, 
as it contained GPS obstructions, as well as sharp 
corners and curving roads that continuously change the 
dynamics of the vehicle travelling the circuit. The 
location of road boundaries within the cemetery were 
predetermined and used to generate the objects used in 
the augmentation process. 

The test vehicle was driven around the test circuit a 
number of times, with the AR prototype operating in 
real-time at 10 frames per second with VGA (640 × 
480 pixels) resolution, and all navigation instruments 
operating. Figure 8 shows the AR prototype in 
operation with all sensors operating and the 
augmentation of the road boundaries. 

 
Figure 8 Augmented image from the prototype
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From Figure 8 it is clearly visible that when all 
observations are available the integrated position and 
attitude determination system is successful in 
accurately aligning the augmented objects (the road 
boundaries) with the real world images of the driver as 
captured by the digital video camera. The results 
presented in Figure 8 are typical of the visual 
registration accuracy of augmented data and the real 
world images captured in this research. 

In order to further explore and quantify the effects of 
errors in the position and attitude determination 
system, a single epoch of data from the vehicle 
travelling around the cemetery test circuit was selected. 
A 2 degree error was added to the heading as computed 
at that epoch. The augmented data was then rendered 
(using the heading with the error). The result is shown 
in Figure 9. 

 

 
Figure 9 Misalignment of the augmented road boundaries caused by a 2 degree error in heading

As theoretically determined, the misalignment caused 
by an error in heading is more clearly obvious in the 
distance. However, the effect of foreshortening causes 
both the object being augmented as well as the 
augmented model to become smaller in the distance. 

Hence, misalignment of the most distant road boundary 
and augmented model cannot be visibly detected. In 
comparison, an error in position of 2 metres has the 
results shown in Figures 10 and 11. 

 
Figure 10. Misalignment of the augmented road boundaries caused by 
a 2 metre position error that is perpendicular to the direction of travel 

 
Figure 11. Misalignment of the augmented road boundaries caused by 

a 2 metre position error that occurs in the direction of travel 

 
Despite the position errors shown in Figures 8 and 9 
having exactly the same magnitude, the direction of the 

error has a profound effect. Where the error occurred in 
the direction of travel, very little visual effect could be 
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identified. On the other hand, when the direction of 
error was perpendicular to the direction of travel, the 
misalignment was clearly visible.  

In order to evaluate the performance of the integrated 
position and attitude determination system during 
periods of GPS outages, a simulation test is conducted 
using the RTK GPS observations as a measure of the 
‘true’ trajectory of the mobile platform. A portion of 
the data collected while travelling the test circuit was 
selected where RTK GPS observations were available. 
The GPS observations were then removed from the 
data, hence simulating a GPS outage. The simulated 
outage spanned 60 seconds. The Kalman filter was 
used to process the available DR measurements both 
with and without Intelligent Navigation. The alignment 
of augmented road boundaries exhibited by the AR 
prototype using only RTK GPS (i.e. the truth 
alignment), using only DR measurements (no IN), and 
using DR with IN are displayed in Figure 12. 

Although Figure 12(b) shows a clear misalignment 
between the augmented and real road boundaries, the 

addition of the IN “observations” significantly reduces 
this misalignment as shown in Figure 12(c). In fact, as 
illustrated in Figure 13, the position error of the vehicle 
(calculated using the RTK GPS observations as truth) 
was reduced from 4.35 metres to 1.54 metres, a 65% 
reduction. It is important to note that despite a 
remaining position error of 1.54 metres after a 60 
second outage, the alignment of the real and augmented 
boundaries appear visually correct as shown in Figure 
12(c). The nature of the IN rules shift much of the 
remaining error in position into the direction of travel, 
hence minimising the visual misalignment caused by 
that error. This phenomenon is ultimately due to the 
linear nature of the road centrelines. This feature 
allows IN to readily detect and correct for errors 
perpendicular to the centreline, and without a change in 
heading (i.e. turning a corner), error in the direction of 
travel cannot be detected. 

 

 
Figure 12 Augmentation of road boundaries using: (a) RTK GPS only, (b) 

integrated gyroscope and odometer after a 60 second GPS outage, and (c) integrated 
gyroscope, odometer and IN after a 60 second GPS outage 
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Figure 13 Position error over the 60 second GPS outage with and without IN 

 

4 Conclusions 

The aim of this research was to investigate the 
performance of an integrated position and attitude 
determination system to support AR applications in 
outdoor unprepared environments. To achieve this aim, 
multiple sensors and data sources were integrated within 
a Kalman filter. The position and attitude determination 
system was evaluated within a land mobile AR prototype 
developed within this research. Following are some of the 
conclusions drawn from this research. 

 The Kalman filter developed was able to provide 
updates of position and attitude to enable accurate 
and continuous registration of the augmented objects 
with real world perspective views.  

 The development of the unit variance test allowed for 
tuning of the Kalman filter to rapidly adapt to 
changes in the mobile platform dynamics. Hence the 
resulting filter provided improved results during 
times of low dynamics, but swift reaction times 
during high dynamics. 

 The integration of the IN rules into the Kalman filter 
provided a significant improvement to position and 
attitude determination during GPS outages.  

 The effect of errors in the position and attitude 
determination component on the alignment of 
augmented information with real world views was 
minimised when the error was contained primarily to 
the direction of travel. This occurrence is particularly 

relevant when considering the operation of IN. IN 
was found not only to reduce the magnitude of error, 
but to also constrain remaining error in the position 
solution to the direction of travel. 
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